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Abstract. The behaviour of heat conducting viscous fluids is described through a suitable set 
of hidden variables whose (objective) evolution equations account also for cross-effect 
coupling terms. Such equations are incorporated into a thermodynamic theory which 
includes Muller’s one as a particular case and leads to Navier-Stokes’ and Fourier’s laws 
when uniform constant gradients of velocity and temperature are concerned. Meanwhile, 
the whole nonlinear theory turns out to be hyperbolic; this is shown via a direct analysis of 
the propagation modes. Finally, we outline an operative way of testing whether the 
co-rotational derivative is the required objective time derivative. 

1. Introduction 

Current approaches to non-stationary irreversible thermodynamics are developed on 
the basis of kinetic theory arguments or hinge on phenomenological standpoints. 
Within its range of validity the kinetic theory provides more detailed schemes; yet 
phenomenological theories are needed to corroborate the results by showing that they 
are not a consequence of a particular model or approximation. Among the 
phenomenological formulations of non-stationary irreversible thermodynamics, a 
prominent one is that of Muller (1967). Basically, Muller’s paper describes non- 
equilibrium states by allowing the entropy to depend also on the heat flux and the 
viscous stress, and, moreover, by accounting for an entropy extra-flux besides the usual 
term proportional to the heat flux. The transport equations so obtained by Muller, 
which are substantiated also by a kinetic theory performed previously by Grad (1949), 
have been subsequently re-examined in different contexts by Lebon and Lambermont 
(1976) and Kranyg (1977a). General relativistic counterparts of Muller’s approach 
have been accomplished by Israel (1976) and KranyS (1977b) in the case of fluid 
mixtures and dissipative elastic media, respectively. 

An alternative phenomenological approach to irreversible thermodynamics may be 
carried out through the model of materials with hidden variables. From a physical 
viewpoint the hidden variables closely resemble the well known relaxed fluxes of 
non-stationary thermodynamics (Maugin 1974, KranyS 1977a). The mathematical 
aspects pertaining to the hidden variable model are exhibited in the pioneering article 
by Coleman and Gurtin (1967) and investigated within a different scheme by Day 
(1976). Recently, appropriate improvements of the model (Morro 1980a) have resulted 
in a description of viscosity which is hyperbolic in character (Bampi and Morro 1980), 
besides being compatible with thermodynamics. Motivated by the encouraging results 
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achieved so far, in this paper we look again at the hidden variable approach in 
conjunction with heat conducting viscous fluids. 

The primary purpose of this work is to set up a thermodynamic theory of fluids with 
hidden variables including cross-effect coupling terms in the evolution (or transport) 
equations. Accordingly, in § 2, after a general outline of the subject, we write the 
evolution equations involving four coupling terms and we show that, in this case too, the 
hidden variables do not depend on the present values of the real variables. In view of 
this prominent property, in § 3 we are able to cast the scheme so achieved within a 
thermodynamic framework. Owing to the presence of cross terms, we admit the 
existence of an entropy extra-flux, thus generalising the customary Clausius-Duhem 
inequality. Then the great flexibility of the hidden variable approach enables us to 
obtain just Muller’s theory through a particular choice of the free energy function. 

A second purpose of this paper is to show whether, and how, the new theory 
accounts for wavefront propagation (§ 4) without any recourse to linear approxima- 
tions. The hyperbolicity of the full theory is proved simply by exhibiting the pro- 
pagation modes and the corresponding characteristic speeds of the acceleration waves 
propagating into a state at equilibrium. The physical interest of these results lies in the 
possibility of determining the phenomenological coefficients by means of suitable 
measures of the propagation speeds and the amplitudes of the waves. 

A third, minor, aim of this article is to give further insights into the question of the 
time derivative appearing in the evolution equations. In § 5 we outline how a measure 
of the transverse wave speed allows us to check whether the co-rotational derivative is 
suitable as the objective time derivative in the evolution equations. 

2. Coupled evolution equations for hidden variables 

Throughout, p stands for the mass density, 8 the absolute temperature, CC, the free 
energy, q the entropy, e the internal energy, T the stress tensor, 4 the heat flux, f the 
body force, and r the heat supply; V is the velocity field relative to a fixed inertial frame 
9. The symbol V denotes the spatial gradient while D is the symmetric part of the 
velocity gradient L = V V and a colon indicates complete contraction. 

For the purpose of describing non-equilibrium phenomena, here the behaviour of a 
fluid is expressed through a set of Cz response functions 

= p ,  a), (1) 

where U is the array (CC,, 7, T, 4), and through differential equations of the form 

governing the evolution of the hidden variables a. The superposed spot in (2) 
represents an appropriate time derivative. Often such a derivative is identified with the 
ordinary time derivative, namely, for any vector U, g = zi = du/dt. Sometimes, instead, 
in order to make the constitutive theory frame-indifferent (objective), the spot deriva- 
tive is taken to be the co-rotational time derivative, that is to say d = zi - Wu, with 
W = $(L - LT) (Truesdell and Toupin 1960, § 148). Of course the two derivatives are 
assumed to coincide when acting on scalars. Although the choice of the derivative is not 
crucial to the results exhibited in §§ 2 , 3  and 4, henceforth, for the sake of definiteness, 
we confine our attention to the co-rotational derivative. 
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As to the response functions (1) and the evolution equations (2), observe that they 
do not satisfy the rule of equipresence (Truesdell and Toupin 1960, § 293, Eringen 
1975b); the difference between the arguments of (1) and (2) is motivated by the 
requirement of compatibility with wave propagation (Bampi and Morro 1979, Morro 
19 8 Ob). 

It is possible to present the next developments within the general scheme sum- 
marised by equations (1) and (2), through the adoption of very weak restrictions on the 
function h t .  However, both to avoid inessential formal difficulties and to obtain a 
theory providing the most direct generalisation of Navier-Stokes’ and Fourier’s laws, it 
is convenient to imagine the hidden variables a as the triple of the symmetric traceless 
second-order tensor a’, the scalar a2, and the vector a3, and to choose h so as to make 
equations (2) into the coupled system 

= U / d ( ( D )  -4 + a(Va3J, 

&2 = (1/T2)(Tr D - a2)  + bV . a3, (3) 

d3 = (1 /73)(v6 - ( ~ 3 )  + cVa2 + d V  . ai, 

where ( ) denotes the symmetric traceless part while a, b, c, d are phenomenological 
coefficients and T ~ ,  Q, 73 are relaxation times. 

Owing to the structure of the evolution equations commonly used in the literature, 
we have become accustomed to the profitable feature of the hidden variables a 
whereby the values a ( t )  are independent of the values, at the same time t, of the real 
variables. To show that this feature occurs here as well, consider, for example, the 
equation (3)3; at any particle of the fluid a trivial integration yields 

a 3 ( t )  = I t  exp[-(t - ~ ) / T ~ ] ( V O / T ~  + cVa2 + d V  . a1 + Wa3)(5) d5 
to 

+ a3(t0) exp[-(t - t d / d  (4) 

Now, given a set of C’ functions (histories) e‘, p ’ ,  D’, (Ve)’, look at C’ functions e”, p”, 
D”, (Ve)” such that e’ = e”, p’  = p” ,  D’ = D”, (Ve)’ = (Ve)” in [to, t - E ]  and that e”(t), 
p”(t) ,  D”( t ) ,  (Ve)”(t) ,  besides 6”(t) ,  are arbitrary. Then by virtue of (4), it is evident that 
the choice of a small enough E makes as small as we please the change of a3( t )  induced 
by the replacement of e’, p’ ,  D’, (Ve)‘ with e’’, p”, D”, (Ve)’’, independently of the values 
taken by V a 2 ,  V . ai, and W. Analogous proofs hold also for a1 and a2. 

3. Hidden variable approach to non-stationary thermodynamics 

Having established the evolution properties, we are able to incorporate the hidden 
variables a’, (YZ,  a 3  into a thermodynamic framework, once the appropriate form of the 
second law is decided. As is well known, conventional theories postulate that entropy 
flux is simply proportional to heat flux (see e.g. Coleman 1964). More general theories 
(see e.g. Eringen 1975a, § 3.3) allow for the existence of an entropy extra-flux N in 
addition to the usual term q / O .  In isotropic fluids the simplest form of N involving the 
hidden variables ai, a2, and a3 is 

N =Kff1a3+La2ff3; ( 5 )  

t Here we have in mind the restrictions considered by Day (1976). 
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a possible connection between the phenomenological coefficients K, L and a, b, c, d will 
be given shortly. Accordingly, on account of the usual balance equations 

p + p v .  v=o, p V - V . T = p f ,  p t  - T :  D + V  . q  = p r ,  (6) 

the second law of thermodynamics may be given the form of the inequality 

- p ( $  + v e ) +  T : D - ( i /e)q.  ve + ev .  to (7) 

which must hold for any particle. Then substitution of equations (3) into (7) provides 

+(BK-al-p~$,,):V-a3+(eLa2-pb$~~)V. ( ~ 3  

+ ( e ~ - a ~ - p ~ * , ~  . v a Z + ( e ~ - a 3 - p d * , ~ )  . (v .  -al)zo, (8) 

where the subscripts 8, p, al,  a2, -a3 denote partial differentiations. Now, on appealing 
to the independence of the hidden variables al(t) ,  az(t) ,  -a3(t), and hence of +(t ) ,  of the 
present values i ( t ) ,  D(t ) ,  (Ve)(t), we conclude that the inequality (8) holds identically if 
and only if 

4 = - ( P ~ / T ~ ) L ,  

p = ~ ' 4 ~  being the pressure, and 

7 3  

+(@L-a3-ppc$,J . V a 2 + ( @ K c ~ 3 - p d $ , ~ ) .  (V .a~)aO. (10) 

Whenever the function CC, satisfies the inequality (lo),  the response functions 77, T, q 
defined by (9) are automatically consistent with the second law of thermodynamics in 
the form (7). 

From a merely mathematical standpoint, we cannot prefer any function $ among all 
those compatible with (10). Physical arguments, instead, allow us to select the 
particular free energy function $ given by 

) 1 2 K73  1 
CC, = v(e, p )  +-( Frl-al : -a1 + z l T 2 a 2  +--a3. -a3 . 

P 2e 

First, owing to the independence of the quantities V .-a], Va2,  V a 3 ,  and V . a 3 ,  equation 
(11) and the identical validity of the inequality (10) imply that 

2pr1a = OK, lr2b = BL, K 7 3 C  = 8 L, ~ r 3 d  = e2K,  (12) 
2 

and that p t 0, ( 2 0 ,  K 2 0 .  The conditions (12) reduce the effective number of the 
phenomenological coefficients to two only. Relations of this sort are not new in the 
literature (see e.g. Muller 1967, KranyS 1977a) and are sometimes referred to as a 
generalisation of the Onsager reciprocal relations (see e.g. Stewart 1977, p 66); here 
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they are a genuine consequence of the second law of thermodynamics. Second, 
equations (9) and (1 1) give 

7) = (KT3/2p8’)a3. a 3  (13) 

T = -PI + 2 p ( ~ 1 +  5 ~ 2 1 ,  4 = -K(Y3, (14) 

and the constitutive equations 

which are the most natural generalisation of Navier-Stokes’ and Fourier’s laws. To 
make this assertion clear, look at time-independent uniform fields D, V8 and assume 
that W = 0 ;  asymptotically the equations (3) yield 

ai = ( D ) ,  a z  = Tr D, a3 = ve, (15) 

whereby the hidden variables coincide with the corresponding real variables, and what 
is more the equations (14) become the standard laws of viscosity and heat conduction. 

The results assembled above are easily shown to be in strict connection with Muller’s 
(1967). Indeed, on expressing the hidden variables al, a2, a3 in terms of ( T ) ,  Tr T, q via 
equations (14) and substituting into (3), we obtain Muller’s transport equations 
provided that simple identifications among the corresponding coefficients are made. 

4. Acceleration waves propagating into a region at equilibrium 

Henceforth we consider the propagation of acceleration wavefronts (acoustic waves) in 
fluids described by the constitutive equations (1 l), (13) and (14). In this connection we 
note that the independence of the hidden variables al(t) ,  az(t) ,  a3(t) of the present 
values D( t ) ,  Ve(t) enables us to assume the continuity of a l ,   ay^, a3 even though D, Vi3 
suffer jump discontinuities as happens at acceleration wavefronts. Accordingly, we say 
that a moving singular surface s ( t )  represents an acceleration wave if the functions V, 8, 
p, ai ,  a2,  a3 are continuous everywhere, whereas their time and spatial derivatives of 
any order suffer jump discontinuities across s ( t )  but are continuous functions every- 
where else. In order to avoid overly cumbersome expressions of the propagation modes 
and the related speeds, in this section the fluid ahead of the front is assumed to be held at 
equilibrium--l = 0, V8 = 0-until the arrival of the wave at time 1. In such a case, no 
matter how the initial values for the hidden variables at to = -m are chosen, we may 
take al( t )  = 0, a2(t)  = 0, a3(t) = 0 .  To prove that this is so, we begin by remarking that if 
L = 0,  V8 = 0 at all times prior to t, the evolution equations (3) allow us to find that a2  
can be written as 

Consideration of this result shows that the same is true for a3. Hence we find that ai too 
tends monotonically to zero. Accordingly the condition to = -m provides the desired 
conclusion. 

To proceed further we need two compatibility relations for the discontinuities across 
s. Consider any time-dependent field q5 and denote by [ ] the jump across the front s. 
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The first relation is supplied by Maxwell’s theorem. Let n be the unit normal to s and set 
V, = n . V; then [4] = 0 implies that 

W4l= [Vfl413n. (16) 
To derive the second relation, look at an observer 9 moving with the surface s at the 
speed V .  n + U, relative to g. As is well known, the time-rate of change of 4 as 
apparent to 9 is given by the equation (see e.g. McCarthy 1975)t 

(17) l34/st = c j  + uv,rp. 

Hence we obtain 

l3[41/8t = [&I+ m 7 n 4 l .  

tcjl = - m 7 n 4 l .  
Thus, in the case when [4] = 0, we find that 

To derive the jump relations across the front, we begin by applying the conditions 
(16) and (18) to the evolution equations (3); from (6)i it follows that 

where v = n x ( V  x n )  and y = bc + 2ad/3, F= (2U2 - ad)-’d/rl. Then, starting with 
the balance equations (6)2,3, some lengthy but straightforward calculations lead us to 
the jump relations 

One glance at these relations tells us that transverse waves can occur. More precisely, 
letting w be the ordered array ([V,p], [V,O], [V,v]), the propagation mode 

w = (0 ,  0,  [vnu]) 

corresponding to hydrodynamic homothermal waves travelling at the speeds 

UT = * ( p / p ~ 1  (21) 

Longitudinal waves occur as well; they may be viewed as the counterpart of the 

i- It is worth emphasising that equation (17) involves the material time derivative $, not the co-rational time 
derivative. 
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customary acoustic waves. However, owing to the contributions of heat conductivity 
and viscosity, here we have fast and slow longitudinal waves travelling at the speeds 

respectively, where 

The precise forms of the associated propagation modes 

w = ([VnPl, P n e I ,  0)  

can be easily deduced from any of the relations (20): 
It is a hard mathematical task to show the realness and the positiveness of the 

right-hand sides of (22 )  in their present form. On the other hand, from a physical 
standpoint it seems reasonable to regard K, L, and hence a,  b, c, d,  as small parameters, 
in that the corresponding cross-effects are to be viewed as terms of higher order in the 
deviations from the local equilibrium. This suggests the examination of (22 )  within the 
linear approximation with respect to K, L. In this instance, the desired conclusion is a 
consequence of the usual thermodynamic properties qe > 0, p p  > 0 which force A. > 0, 
A i  - wo > 0, where 

are the zero-order approximations to A and w,  respectively. 
As a final remark we point out the operative meaning of the results assembled 

above. More precisely, measures of the local speeds of propagations UT, Uf, U,, and 
the ratios between [V,p]  and [V,O] in the case of the longitudinal waves give five 
relations in the five unknown phenomenological parameters ~ 1 , 7 2 ,  r3, and K, L. So, at 
least in principle, this fact provides a precise experimental check of the validity of the 
present theory. 

5. Comments about the time derivative 

In view of the assumption that the region ahead of the front is at equilibrium, the results 
of 0 4 rule out the possibility of setting up experimental procedures which distinguish 
the appropriate spot derivative. Here we point out how a particular situation makes an 
experimental procedure practicable. More precisely, we look at plane waves propagat- 
ing in a non-heat conducting fluid whose evolution equations involve the co-rotational 
time derivative as spot derivative. In this case we havet 

&l=(1/71)((D)-Ly1)+ wLy1-&’1w, b2 = ( 1 / ~ ~ ) ( T r  D -a2) .  (23 )  
Suppose now that the tensor L in the unperturbed state of the fluid satisfies the 

t Observe that, owing to the structure of (12), the vanishing of any of the coefficients p, f; K cancels every 
effect of the corresponding hidden variables on the other ones (e.g. K = 0 implies that a = 0, b = 0). 
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conditions L = D, Le = 0, e being a fixed unit vector. Then, by virtue of (23) and the 
continuity of al, it follows that a l e  = ( e .  a l e ) e  at the wave. Following the line of 
calculation of 0 4, it is an easy matter to see that transverse waves may exist if the normal 
n is orthogonal to e and the polarisation [V,u] is along the direction e itself. The 
corresponding local speeds of propagation are given by 

u2 = ( c L / P ~ )  + ( p . / p ) ( n .  a l n  - e a l e )  (24) 

where the new contribution (n  . a l n  - e .  a l e ) F / p  is a direct consequence of the term 
Wal - a1 W in (23)k This provides an experimental way of testing if the choice of the 
co-rotational derivative, appearing in the present evolution equations, is the proper 
one. 

Besides being interesting on its own in the classical context, the problem of finding a 
proper objective time derivative deserves further attention also in the general relativis- 
tic context. There, two slightly different derivatives are usually adopted (see Carter and 
Quintana 1972, Maugin 1978). The availability of a precise classical time derivative 
would constitute a valuable insight into the question of the object relativistic time 
derivative. 
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